Environment Setup
  • L1-Anaconda
  • L2-Jupyter Notebook
Data Analysis
  • L1-Introduction
  • L2-Numpy: Array Concept and Math Operations
  • L3-Numpy: Indexing, Slicing and Iterating
  • L4-Numpy: Shape Manipulation
  • L5-Numpy: Linear Algebra
  • L6-Pandas: Data structures and properties
  • L7-Pandas: Operations
  • L8-Pandas: Applying Functions
  • L9-Pandas: Importing and Exporting data
  • L10-Pandas: Merge-Join-Concat-Group by
  • L11-Pandas: Statistics with Pandas
  • L12-Time Series with Pandas
  • L13-Matplotlib basics
  • L14-Matplotlib Subplots and Axes
  • L15-Matplotlib: Object Oriented Method
  • L16-Matplotlib: Color Maps
  • L17-Matplotlib: Statistical Graphs part1
  • L18-Matplotlib: Statistical Graphs part2
  • L19-Seaborn: Basics
  • L20-Seaborn: Color Palette
  • L21-Seaborn: Categorical Data
  • L22-Seaborn: Numerical Data
Machine Learning
  • L1-Introduction to Machine Learning
  • L2-Overfitting and Underfitting
  • L3-KFold Cross Validation
  • L4-Classification Metrics
  • L5-Logistic Regression
  • L6-Plotting Decision Boundaries
  • L7-Naive Bayes Classifier
  • L8-Suppor Vector Machines for Classification
  • L9-Decision Trees
  • L10-Random Forest
  • L11-KNN
  • L12-GridSearchCV
  • L13-K-Means
  • L14-Principal Component Analysis(PCA)
  • L15-Linear Discriminant Analysis(LDA)
  • L16-Kernel Principal Component Analysis(KPCA)
  • L17-Ensemble Methods(Bagging)
  • L18-AdaBoost
  • L19-Regression Model and Metrics
  • L20-Linear Regression
  • L21-Regularization with Lasso, Ridge and ElasticNet
  • L22-Polynomial Regression
  • L23-SVM, KNN and Random Forest for Regression
  • L24-RANSAC Regression
Neural Networks
  • L1-Neural Networks Concepts-Part 1
  • L2-Neural Networks Concepts-Part 2
  • L3-Loss Functions
  • L4-Activation Functions
  • L5-Optimization of ANNs
  • L6-Constructing an ANN with Python-part1
  • L7-Constructing an ANN with Python-part2
  • L8-Constructing an ANN with Python-part3
  • L9-Perceptron with Scikit Learn
  • L10-Multilayer Perceptron with Scikit Learn
Applications
  • L1-Datasets
  • L2-ANN for Regression Part 1
  • L3-ANN for Regression Part 2
  • L4-Recognizing Handwritten Digits
Extra Information - Source code, and other stuff
  • Source Code
  • Bonus Lecture and Information