- Introduction to Multivariate Analysis (MVA) Course
- Materials for Section 1 Introduction to MV Data and Analysis
- What is "Multivariate Analysis" ?
- Missing Values and the Measure Dataset
- Other Multivariate Datasets
- Covariance, Correlation and Distance (part 1)
- Covariance, Correlation and Distance (part 2)
- Covariance, Correlation and Distance (part 3)
- The Multivariate Normal Density Function
- Setting Up Normality Plots
- Drawing Normality Plots
- Covariance, Correlation and Normality Exercises
- Materials and Exercises for Visualizing Multivariate Data Section
- Covariance and Correlation Matrices with Missing Data (part 1)
- Covariance and Correlation Matrices with Missing Data (part 2)
- Univariate and Multivariate QQPlots of Pottery Data
- Converting Covariance to Correlation Matrices
- Plots for Marginal Distributions
- Outlier Identification
- Chi, Bubble, and other Glyph Plots
- Scatterplot Matrix
- Kernel Density Estimators
- 3-Dimensional and Trellis (Lattice Package) Graphics
- More Trellis (Lattice Package) Graphics
- Bivariate Boxplot and ChiPlot Visualizations Exercises
- Materials for Principal Components Analysis (PCA) Section
- Bivariate Boxplot Visualization Exercise Solution
- ChiPlot Visualization Exercise Solution
- What is a "Principal Components Analysis" (PCA) ?
- PCA Basics with R: Blood Data (part 1)
- PCA Basics with R: Blood Data (part 2)
- PCA with Head Size Data (part 1)
- PCA with Head Size Data (part 2)
- PCA with Heptathlon Data (part 1)
- PCA with Heptathlon Data (part 2)
- PCA with Heptathlon Data (part 3)
- PCA Criminal Convictions Exercise
- Materials for Multidimensional Scaling Section
- PCA Criminal Convictions Exercise Solution
- Introduction to Multidimensional Scaling
- Classical Multidimensional Scaling (part 1)
- Classical Multidimensional Scaling (part 2)
- Classical Multidimensional Scaling: Skulls Data
- Non-Metric Multidimensional Scaling Example: Voting Behavior
- Non-Metric Multidimensional Scaling Example: WW II Leaders
- Multidimensional Scaling Exercise: Water Voles
- Materials for Cluster Analysis Section
- MDS Water Voles Exercise Solution
- Introduction to Cluster Analysis
- Hierarchical Clustering Distance Techniques
- Hierarchical Clustering of Measures Data
- Hierarchical Clustering of Fighter Jets
- K-Means Clustering of Crime Data (part 1)
- K-Means Clustering of Crime Data (part 2)
- Clustering of Romano-British Pottery Data
- K-Means Classifying of Exoplanets
- Model-Based Clustering of Exoplanets
- Finite Mixture Model-Based Analysis
- Cluster Analysis Neighborhood and Stripes Plots
- K-Means Cluster Analysis Crime Data Exercise
- Materials for Exploratory Factor Analysis (EFA) Section
- K-Means Crime Data Exercise Solution
- Introduction to Exploratory Factor Analysis (EFA)
- The factanal() Function Explained
- EFA Life Data Example
- EFA Drug Use Data Example
- Comparing EFA with Confirmatory Factor Analysis (CFA)
- EFA Exercise
- Introduction to the SEM, QGraph and SIMSEM Course Section with Materials
- Exploratory Factor Analysis (EFA) Exercise Solution
- Specify and Estimate Drug Use SEM Model
- Specify and Estimate Alienation SEM Model
- QGraph Visualizations
- SIMSEM Package Simulation Capabilities (part 1)
- SIMSEM Package Simulation Capabilities (part 2)