INTRODUCTION TO THE COURSE [QUICK WIN IN FIRST 10-12 MINS]
  • Welcome Message
  • Updates on Udemy Reviews
  • Course overview
  • BONUS: Learning Path
  • ML vs. DL vs. AI
  • ML Deep Dive
  • Download Course Materials
  • BONUS: ML vs DL vs AI
  • BONUS: 5 Benefits of Jupyter Notebook
ANACONDA AND JUPYTER INSTALLATION
  • Download and Set up Anaconda
  • What is Jupyter Notebook
  • Install Tensorflow
  • How to run a Jupyter Notebook
PROJECT #1: ARTIFICIAL NEURAL NETWORKS - CAR SALES PREDICTION
  • Introduction
  • Theory Part 1
  • Theory Part 2
  • Theory Part 3
  • Theory Part 4
  • Theory Part 5
  • Project Overview
  • Import Data
  • Data Visualization Cleaning
  • Model Training 1
  • Model Training 2
  • Model Evaluation
PROJECT #2: DEEP NEURAL NETWORKS - CIFAR-10 CLASSIFICATION
  • Introduction
  • Theory Part 1
  • Theory Part 2
  • Theory Part 3
  • Theory Part 4
  • Problem Statement
  • Data Vizualization
  • Data Preparation
  • Model Training Part 1
  • Model Training Part 2
  • Model Evaluation
  • Save the Model
  • Image Augmentation Part 1
  • Image augmentation Part 2
PROJECT #3: PROPHET TIME SERIES - CHICAGO CRIME RATE
  • Introduction
  • Project Overview
  • Import Dataset
  • Data Vizualization
  • Prepare the Data
  • Make Predictions
PROJECT #4: PROPHET TIME SERIES - AVOCADO MARKET
  • Introduction
  • Load Avocado Data
  • Explore Dataset
  • Make Predictions Part 1
  • Make Predictions Part 2 (Region Specific)
  • Make Prediction Part 2.1
PROJECT #5: LE-NET DEEP NETWORK - TRAFFIC SIGN CLASSIFICATION
  • Introduction
  • Project Overview
  • Load Data
  • Data Exploration
  • Data Normalization
  • Model Training
  • Model Evaluation
PROJECT #6: NATURAL LANGUAGE PROCESSING - E-MAIL SPAM FILTER
  • Introduction
  • Naive Bayes Theory Part 1
  • Naive Bayes Theory Part 2
  • Spam Project Overview
  • Visualize Dataset
  • Count Vectorizer
  • Model Training Part 1
  • Model Training Part 2
  • Testing
PROJECT #7: NATURAL LANGUAGE PROCESSING - YELP REVIEWS
  • Introduction
  • Theory
  • Project Overview
  • Load Dataset
  • Visualize Dataset Part 1
  • Visualize Dataset Part 2
  • Exercise #1
  • Exercise #2
  • Exercise #3
  • Apply NLP to Data
  • Apply Count Vectorizer to Data
  • Model Training Part 1
  • Model Training Part 2
  • Model Evaluation Part 1
  • Model Evaluation Part 2
PROJECT #8: USER-BASED COLLABORATIVE FILTERING - MOVIE RECOMMENDER SYSTEM
  • Introduction
  • Theory
  • Project Overview
  • Import Movie Dataset
  • Visualize Dataset
  • Collaborative Filter One Movie
  • Full Movie Recomendation
Bonus Lectures