INTRODUCTION TO THE COURSE: The Key Concepts and Software Tools
  • About the Course and Instructor
  • Data and Scripts For the Course
  • Introduction to R and RStudio
  • Conclusion to Section 1
Reading in Data from Different Sources
  • Read in CSV & Excel Data
  • Read in Data from Online CSV
  • Read in Zipped File
  • Read Data from a Database
  • Read in JSON Data
  • Read in Data from PDF Documents
  • Read in Tables from PDF Documents
  • Conclusion to Section 2
Webscraping: Extract Data from Webpages
  • Read in Data From Online Google Sheets
  • Read in Data from Online HTML Tables-Part 1
  • Read in Data from Online HTML Tables-Part 2
  • Get and Clean Data from HTML Tables
  • Read Text Data from an HTML Page
  • Introduction to Selector Gadget
  • More Webscraping With rvest-IMDB Webpage
  • Another Way of Accessing Webpage Elements
  • Conclusions to Section 3
Introduction to APIs
  • What is an API?
  • Extract Text Data from Guardian Newspaper
Text Data Mining from Social Media
  • Extract Data from Facebook
  • Get More out Of Facebook
  • Set up a Twitter App for Mining Data from Twitter
  • Extract Tweets Using R
  • More Twitter Data Extraction Using R
  • Get Tweet Locations
  • Get Location Specific Trends
  • Learn More About the Followers of a Twitter Handle
  • Another Way of Extracting Information From Twitter- the rtweet Package
  • Geolocation Specific Tweets With "rtweet"
  • More Data Extraction Using rtweet
  • Locations of Tweets
  • Mining Github Using R
  • Set up the FourSquare App
  • Extract Reviews for Venues on FourSquare
  • Conclusions to Section 5
Exploring Text Data For Preliminary Ideas
  • Explore Tweet Data
  • A Brief Explanation
  • EDA With Text Data
  • Examine Multiple Document Corpus of Text
  • Brief Introduction to tidytext
  • Text Exploration & Visualization with tidytext
  • Explore Multiple Texts with tidytext
  • Count Unique Words in Tweets
  • Visualizing Text Data as TF-IDF
  • TF-IDF in Graphical Form
  • Conclusions to Section 6
Natural Language Processing: Sentiment Analysis
  • Wordclouds for Visualizing Tweet Sentiments: India's Demonetization Policy
  • Wordclouds for Visualizing Reviews
  • Tidy Wordclouds
  • Quanteda Wordcloud
  • Word Frequency in Text Data
  • Tweet Sentiments- Mugabe's Ouster
  • Tidy Sentiments- Sentiment Analysis Using tidytext
  • Examine the Polarity of Text
  • Examine the Polarity of Tweets
  • Topic Modelling a Document
  • Topic Modelling Multiple Documents
  • Topic Modelling Tweets Using Quanteda
  • Conclusions to Section 7
Text Data and Machine Learning
  • Clustering for Text Data
  • Clustering Tweets with Quanteda
  • Regression on Text Data
  • Identify Spam Emails with Supervised Classification
  • Introduction to RTextTools
  • More on RTextTools
  • Classifying Textual Data
  • ML Approaches For Predicting a Binary Outcome in Text Data
  • ML Approaches For Predicting a Multi-Class Outcome in Text Data
Network Analysis
  • A Small (Social) Network
  • A More Theoretical Explanation
  • Build & Visualize a Network
  • Network of Emails
  • More on Network Visualization
  • Analysis of Tweet Network
  • Identify Word Pair Networks
  • Network of Words
  • Text Analysis of Jane Austen's Mansfield Park
  • Github